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Abstract
The model of κ-deformed space is an interesting example of a noncommutative
space, since it allows a deformed symmetry. In this paper, we present new
results concerning different sets of derivatives on the coordinate algebra of
κ-deformed Euclidean space. We introduce a differential calculus with two
interesting sets of one-forms and higher-order forms. The transformation law
of vector fields is constructed in accordance with the transformation behaviour
of derivatives. The crucial property of the different derivatives, forms and
vector fields is that in an n-dimensional spacetime there are always n of them.
This is the key difference with respect to conventional approaches, in which the
differential calculus is (n + 1)-dimensional. This work shows that derivative-
valued quantities such as derivative-valued vector fields appear in a generic
way on noncommutative spaces.

PACS number: 11.10.Nx

1. Introduction

The model of κ-deformed spacetime was originally introduced in [1, 2] (for a more
comprehensive list of references, see [3]) and has afterwards been discussed by several groups,
both from a mathematical and a physical perspective.

The main interest in the κ-deformed spacetime comes from the fact that this model is
a mild deformation of spacetime. There is only one coordinate that does not commute with
all others. Therefore this is a sufficiently simple model that may serve as a playground to
develop generic concepts for noncommutative spaces. The reason is that it is a mathematically
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consistent deformation of spacetime, compatible with a simultaneous deformation of the
symmetry structure, the κ-Poincaré algebra. Recently, a new motivation for studying the
κ-deformed spacetime has appeared. Namely, it is a well-founded framework for so-called
doubly special relativity, i.e. special relativity with a second invariant scale (cf [4, 5]).

In its Minkowski version the κ-deformed spacetime has first been treated as the
translational sector of the κ-Poincaré group. It contains one distinguished coordinate which
does not commute with all other coordinates. The κ-Poincaré group as a Hopf algebra is
dual to the κ-Poincaré algebra [6], which has first been derived contracting the Hopf algebra
SOq(3, 2). It has been found that in the so-called bicrossproduct basis [7] the generators of
the κ-Lorentz algebra fulfil the commutation relations of the undeformed Lorentz Lie algebra.
Nevertheless, the symmetry generators of the κ-Poincaré Hopf algebra act in a deformed way
on products of functions.

The bicrossproduct basis of the κ-Poincaré algebra can be obtained by a constructive
procedure requiring consistency with the algebra of coordinates. The transformation behaviour
of the coordinates under rotations leads to an undeformed algebra of rotations. Consistency
with this undeformed algebra of rotations and consistency with the algebra of coordinates are
then the two touchstones to construct geometrical concepts such as derivatives, forms and
vector fields. This is the content of this paper. It complements several analyses concerning
the κ-deformed spacetime which we recently presented in [3, 8]. Our construction of a field
theory based on representing quantities of κ-deformed spacetime by means of �-products is
similar to other recent approaches [9, 10].

This work is organized as follows: in the subsequent section we fix our notation concerning
the abstract algebra, recapitulating results of [3]. We present the Hopf algebra properties of
our model in an introductory way. Several sets of derivatives are discussed; they either have
simple commutation relations with the coordinates or simple transformation behaviour under
rotations.

In section 3 we discuss three �-products which can be defined in a generic way. A closed
formula for the symmetric �-product is derived. The symmetry generators are represented
in terms of derivative operators both for the symmetric �-product and for normal ordered
�-products.

In section 4 we present an analysis of the differential calculus on the κ-deformed space.
In contrast to results in the literature we argue that an n-dimensional κ-deformed space can
be equipped with an n-dimensional differential calculus of one-forms. To be able to do so,
we have to accept that the commutation relations of one-forms with coordinates become
derivative valued. We calculate frame one-forms, which commute with the coordinates, and
construct representations of the forms, regarding them as derivative-valued maps in the algebra
of functions of commuting variables.

In section 5 we introduce vector fields by generalizing the transformation behaviour of
derivatives under the κ-deformed rotations. We construct maps between different vector fields
and find that generically also vector fields are derivative-valued quantities.

2. Derivatives on the κ-deformed space

2.1. The κ-deformed space

The n-dimensional κ-deformed space is a noncommutative space of the Lie algebra type, i.e.
it is the associative factor space algebra Ax̂ freely generated by n abstract coordinates x̂µ,
divided by the ideal freely generated by the commutation relations [11]

[x̂µ, x̂ν] = iCµν
λ x̂λ. (1)
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The structure constants for the κ-deformed space are C
µν
λ = aµδν

λ − aνδ
µ
λ . The characteristic

deformation vector aµ can be rotated without loss of generality into one of the n directions
aµ = aδ

µ
n . In this case there is one special coordinate x̂n, which does not commute with all

other coordinates

[x̂n, x̂j ] = iax̂j , [x̂i , x̂j ] = 0, i, j = 1, 2, . . . , n − 1. (2)

Coordinates without hat such as xµ denote ordinary variables. In most discussions of κ-
deformed spacetime, x̂n is taken to be the time coordinate of a four-dimensional Minkowski
spacetime. The restriction to four dimensions had already been lifted in [12]. Identifying x̂n

with the direction of time is an additional choice. In our approach x̂n is an arbitrary direction
of an n-dimensional Euclidean space. This setting is chosen for transparency of the calculus.
Indices can arbitrarily be lowered or raised with a formal metric gµν = δµν . Greek indices
take values 1, . . . , n, while Roman indices apart from n run from 1, . . . , n − 1. We use the
Einstein summation conventions.

Our formulae generalize in a straightforward way to a Minkowski setting [8]. Also for
non-diagonal metrics there are generalizations [13]. We use the notation (2) instead of κ = 1

a
,

since this is more convenient for working in configuration space.
Derivatives are regarded as maps in the coordinate algebra, ∂̂µ : Ax̂ → Ax̂ . In order to

define derivatives ∂̂µ, we demand that they

• are consistent with (2);
• are a deformation of ordinary derivatives, i.e. [̂∂µ, x̂ν] = δν

µ + O(a);
• commute among themselves.

These restrictions on derivatives ∂̂µ are weak, there exists a wide range of possible solutions

[̂∂µ, x̂ν] = δν
µ +

∑
j

aj (̂∂(µ,ν))
j . (3)

The symbolic notation denotes all terms of a power series expansion in the derivatives ∂̂µ,
which are consistent with the index structure.

With the additional condition that the commutator [̂∂µ, x̂ν] is linear in the derivatives,
there are three one-parameter families of solutions:[
∂̂c1
n , x̂n

] = 1 + iac1∂̂
c1
n ,

[
∂̂c2
n , x̂n

] = 1 + iac2∂̂
c2
n ,

[
∂̂c3
n , x̂n

] = 1 + 2ia∂̂c3
n ,[

∂̂c1
n , x̂j

] = 0,
[
∂̂c2
n , x̂j

] = ia(1 + c2)∂̂
c2
j ,

[
∂̂c3
n , x̂j

] = ia∂̂
c3
j ,[

∂̂
c1
i , x̂n

] = ia∂̂
c1
i ,

[
∂̂

c2
i , x̂n

] = 0,
[
∂̂

c3
i , x̂n

] = iac3∂̂
c3
i ,[

∂̂
c1
i , x̂j

] = δ
j

i ,
[
∂̂

c2
i , x̂j

] = δ
j

i

(
1 + iac2∂̂

c2
n

)
,

[
∂̂

c3
i , x̂j

] = δ
j

i .

(4)

The real parameters ci are not fixed by consistency with (2). We prefer to work with one
particular choice in the following, ∂̂c1=0

µ . For brevity, ∂̂c1=0
µ is denoted as ∂̂µ. There is

always more than one set of linear derivatives (consistent with the coordinate algebra) on
noncommutative spaces of the Lie algebra type (1). If we denote the commutator of coordinates
and derivatives linear in ∂̂µ as

[̂∂µ, x̂ν] = δν
µ + iρνλ

µ ∂̂λ, (5)

we obtain two conditions on ρνλ
µ from consistency with (1):

ρ
µν
λ − ρ

νµ
λ = C

µν
λ , ρ

µν
λ ρκσ

ν − ρκν
λ ρµσ

ν = Cµκ
ν ρνσ

λ . (6)

All three one-parameter sets of derivatives ∂̂ci
µ (4) fulfil the conditions (6). With the freedom

indicated by the parametrization in (4), we have exhausted all linear derivatives. That there is
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such a variety of linear derivatives is disturbing at first sight. But all three families ∂̂ci
µ can be

mapped onto each other. The derivatives ∂̂µ (c1 = 0) are mapped onto the derivatives ∂̂c1
µ for

arbitrary c1 in the following way:

∂̂
c1
j = ∂̂j , ∂̂c1

n = eiac1 ∂̂n − 1

iac1
. (7)

The role of shift operators is played by the following operators, in terms of ∂̂c1
µ

e−ia∂̂n =
(

1

1 + ic1a∂̂
c1
n

) 1
c1

, eia∂̂n = (
1 + ic1a∂̂c1

n

) 1
c1 . (8)

The derivatives ∂̂c2
µ can be expressed in terms of ∂̂µ as well:

∂̂c2
n = eiac2 ∂̂n − 1

iac2
, ∂̂

c2
j = ∂̂j eiac2 ∂̂n , eia∂̂n = (

1 + ic2a∂̂c2
n

) 1
c2 . (9)

The map from ∂̂µ to derivatives ∂̂c3
µ reads

∂̂c3
n = e2ia∂̂n − 1

2ia
+

iac3

2
∂̂k ∂̂k, ∂̂

c3
j = ∂̂j , eia∂̂n = (

1 + 2ia∂̂c3
n + a2c3∂̂

c3
l ∂̂

c3
l

) 1
2 . (10)

The derivatives ∂̂µ are a very suitable basis in the algebra of derivatives to develop our
formalism, as we will see later. The maps (7), (9) and (10) allow us to reformulate the entire
formalism, which we will develop in the following in terms of ∂̂µ, also in terms of any of the
three one-parameter families of linear derivatives ∂̂ci

µ .
We will discuss several other derivatives in the following, for which we will lift the

condition that the commutator (3) is linear in ∂̂µ.

2.2. SOa(n) as a Hopf algebra

We define the generators of rotations Mµν by their commutation relations with the coordinates,
demanding consistency with (2). We require undeformed transformation behaviour, i.e. the
commutation relations of the Lie algebra of SO(n), to zeroth order. In addition the generators
of rotations Mrs and Nl = Mnl should appear at most linearly on the right-hand side of the
commutators [Mµν, x̂ρ]. The only terms admissible in O(a) therefore involve the generators
of rotations Mrs and Nl = Mnl exactly once. Higher-order terms in a have to be accompanied
by derivatives for dimensional reasons. If we demand4 that the commutation relations
close in coordinates and generators of rotations alone, the unique solution consistent with
(2) is

[Mrs, x̂n] = 0, [Nl, x̂n] = x̂l + iaNl,

[Mrs, x̂j ] = δrj x̂s − δsj x̂r , [Nl, x̂j ] = −δlj x̂n − iaMlj .
(11)

The generators Mµν have the commutation relations of the Lie algebra of SO(n):

[Mrs,Mtu] = δrtMsu + δsuMrt − δruMst − δstMru,
(12)

[Mrs,Ni] = δriNs − δsiNr, [Ni,Nj ] = Mij .

Even if, according to (12), the algebra of rotations is undeformed, the action on the coordinates
is deformed (11). Therefore we will call Mµν the generators of the algebra of SOa(n) rotations.
Although actually the universal enveloping algebra of the Lie algebra of the symmetry group
is deformed, we use the symbol of the symmetry group with a slight abuse of notation.

4 More general commutation relations follow if this requirement is lifted.
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We emphasise that consistency with the coordinate algebra leads to the so-called
bicrossproduct basis of the κ-deformed Euclidean algebra, first defined in [7]. The
bicrossproduct basis is singled out by (12) in contrast to the so-called classical basis which
may be obtained by contracting the q-anti-de Sitter Hopf algebra SOq(3, 2) [1]. The classical
and the bicrossproduct basis are related by a nonlinear change of variables. We work in the
bicrossproduct basis in the following. For all further constructions, consistency with (2) and
(12) is a crucial requirement.

An important ingredient of the symmetry structure of κ-deformed space are the Leibniz
rules of the generators of rotations and the derivatives5. They can be derived immediately
from (4) and (11):

∂̂n (f̂ · ĝ) = (∂̂nf̂ ) · ĝ + f̂ · (∂̂nĝ),

∂̂j (f̂ · ĝ) = (∂̂j f̂ ) · ĝ + (eia∂̂n f̂ ) · (∂̂j ĝ),
(13)

Mrs(f̂ · ĝ) = (Mrsf̂ ) · ĝ + f̂ · (Mrsĝ),

Nl(f̂ · ĝ) = (Nlf̂ ) · ĝ + (eia∂̂n f̂ ) · (Nlĝ) − ia(∂̂j f̂ ) · (Mlj ĝ) .

In a more technical language, equations (13) are the coproducts:

	∂̂n = ∂̂n ⊗ 1 + 1 ⊗ ∂̂n,

	∂̂j = ∂̂j ⊗ 1 + eia∂̂n ⊗ ∂̂j ,
(14)

	Mrs = Mrs ⊗ 1 + 1 ⊗ Mrs,

	Nl = Nl ⊗ 1 + eia∂̂n ⊗ Nl − ia∂̂j ⊗ Mlj .

The notion of coproduct leads to the observation that the generators of the κ-deformed
symmetry are elements of a Hopf algebra A. A Hopf algebra is characterized by the
specification of five operations on elements of a vector space: familiar operations are
multiplication of vector space elements, the product (V · W ∈ A if V,W ∈ A), and
the unit 1 ∈ A (V · 1 = 1 · V = V). An algebra with a unit is a vector space which closes
under multiplication of its elements.

The concept of coalgebra is in an abstract sense dual to the concept of an algebra. For
a coalgebra two operations on vector space elements have to be specified: the coproduct
	(V) and the counit ε(V). In the language of representations, the coproduct specifies how a
coalgebra element V ∈ A acts on products of representations. The counit describes the action
on the zero-dimensional representation.

For a bialgebra, the algebra aspects and the coalgebra aspects have to be compatible. For
a Hopf algebra, an additional operation, the antipode S(V), has to be defined, compatible with
all other operations. The antipode is the analogue of the inverse element of groups; in the
language of representations, it states the action on the dual representation.

In our case we obtain

ε(∂̂n) = 0, S(∂̂n) = −∂̂n,

ε(∂̂j ) = 0, S(∂̂j ) = −∂̂j e−ia∂̂n ,

ε(Mrs) = 0, S(Mrs) = −Mrs,

ε(Nl) = 0, S(Nl) = −Nl e−ia∂̂n − iaMlk∂̂k e−ia∂̂n − ia(n − 1)∂̂l e−ia∂̂n .

(15)

We have introduced Mµν in (11) as the generators of SOa(n) rotations. Since the
coproduct involves derivatives, we can deform in a consistent way—as a Hopf algebra—only
the (universal enveloping algebra of the) Lie algebra of the inhomogeneous SO(n). Under

5 We use the term ‘Leibniz rule’ also for the action of the generators of rotations on products of functions.
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SOa(n) we will understand the deformed Euclidean Hopf algebra. For most of the following
issues, considering SOa(n) as a bialgebra is sufficient.

For groups the inverse of the inverse is the identity and the dual representation of the dual
representation is again the original one. Applying the antipode twice, we see that this is not
necessarily the case for a deformed Hopf algebra such as SOa(n). We obtain S2(V) = V for
V �= Ni and for Ni

S2(Nl) = Nl + ia(n − 1)∂̂l �= Nl. (16)

In (4) derivatives ∂̂µ have been introduced as a minimal, linear deformation of commutative
partial derivatives. These derivatives ∂̂µ (c = 0) are a module of SOa(n); however, they have
complicated commutation relations with the generators of rotations

[Mrs, ∂̂n] = 0, [Mrs, ∂̂j ] = δr
j ∂̂s − δs

j ∂̂r ,
(17)

[Nl, ∂̂n] = ∂̂l , [Nl, ∂̂j ] = δl
j

1 − e2ia∂̂n

2ia
− δl

j

ia

2
∂̂k ∂̂k + ia∂̂l ∂̂j .

The other linear derivatives (4) are modules of SOa(n) as well.
We will demand, going beyond (12), that the algebra sector of the full deformed Euclidean

Hopf algebra SOa(n) should remain undeformed. Equations (17) therefore force us to
introduce other derivatives, which we will call Dirac derivatives, as generators of translations
in SOa(n). This will be the content of the following subsection.

As an aside we note the representation of the orbital part of the generators of SOa(n)

rotations Mrs and Nl , in terms of x̂µ and ∂̂µ:

M̂rs = x̂s ∂̂r − x̂r ∂̂s ,
(18)

N̂ l = x̂l e2ia∂̂n − 1

2ia
− x̂n∂̂l +

ia

2
x̂l ∂̂k ∂̂k.

This representation can be derived from (17) and it is consistent with (11) and (12).

2.3. Invariants and Dirac operator

A familiar result [7] is that the lowest-order polynomial in the coordinates invariant under
SOa(n) rotations is not x̂µx̂µ but

Î 1 = x̂µx̂µ − ia(n − 1)x̂n. (19)

This polynomial is not invariant in the sense [Mµν, Î 1] = 0, since

[Mrs, Î 1] = 0, [Ni, Î 1] = 2iax̂µMµi + a2(n − 2)Ni. (20)

The polynomial (19) can meaningfully be interpreted as an invariant, since another invariant
(in the sense of (20)) is obtained if we multiply it with any SOa(n)-invariant expression from
the right.

Equation (19) is the lowest-order invariant in the coordinates alone. The Laplace operator
�̂ is the lowest order invariant built out of derivatives and it is truly invariant under SOa(n)

rotations:

�̂ = ∂̂k ∂̂k e−ia∂̂n +
2

a2
(1 − cos(a∂̂n)), with [Ni, �̂] = 0, [Mrs, �̂] = 0. (21)

All functions �̂ · f (a2�̂) of the Laplace operator are invariant and are consistent with the
classical limit �̂ = ∂̂µ∂̂µ + O(a).

The Dirac operator D̂ is defined as the invariant under

[Ni, D̂] + [ni, D̂] = 0, [Mrs, D̂] + [mrs, D̂] = 0, (22)
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where ni = 1
4 [γ n, γ i] and mrs = 1

4 [γ s, γ r ] are the generators of rotations for spinorial degrees
of freedom, with the Euclidean γ -matrices {γ µ, γ ν} = 2δµν . The components of the Dirac
operator D̂ = γ µD̂µ will be called Dirac derivatives [15]. They are derivatives transforming
linearly under SOa(n) rotations:

[Ni, D̂n] = D̂i, [Ni, D̂j ] = −δij D̂n,
(23)

[Mrs, D̂n] = 0, [Mrs, D̂j ] = δr
j D̂s − δs

j D̂r .

There is a continuous range of solutions to (23) with classical limit D̂µ = ∂̂µ + O(a):

D̂n =
(

1

a
sin(a∂̂n) +

ia

2
∂̂k ∂̂k e−ia∂̂n

)
f (a2�̂),

(24)
D̂j = ∂̂j e−ia∂̂nf (a2�̂).

The simplest solution of (23) is the one with f = 1. We choose this solution to be the Dirac
derivative. It is a nonlinear derivative in the sense of (3):

[D̂n, x̂
i] = iaD̂i,

[D̂n, x̂
n] =

√
1 − a2D̂µD̂µ = 1 − a2

2
�̂,

(25)

[D̂j , x̂
i] = δi

j (−iaD̂n +
√

1 − a2D̂µD̂µ) = δi
j

(
1 − iaD̂n − a2

2
�̂

)
,

[D̂j , x̂
n] = 0.

Its coproduct is given by

	D̂n = D̂n ⊗ (−iaD̂n +
√

1 − a2D̂µD̂µ) +
iaD̂n +

√
1 − a2D̂µD̂µ

1 − a2D̂kD̂k

⊗ D̂n

+ iaD̂i

iaD̂n +
√

1 − a2D̂µD̂µ

1 − a2D̂kD̂k

⊗ D̂i, (26)

	D̂j = D̂j ⊗ (−iaD̂n +
√

1 − a2D̂µD̂µ) + 1 ⊗ D̂j .

The Dirac derivative together with the generators of SOa(n) rotations Mµν forms a κ-deformed
Euclidean Hopf algebra which is undeformed in the algebra sector, (12) and (23). The
deformation is purely in the coalgebra sector, (14) and (26). This special basis of SOa(n) we
will refer to in the following as the SOa(n). Recall that it is not unique (24). Together with
the counit and the antipode of the Dirac derivative

ε(D̂n) = 0, S(D̂n) = −D̂n + iaD̂lD̂l

iaD̂n +
√

1 − a2D̂µD̂µ

1 − a2D̂kD̂k

,

(27)

ε(D̂j ) = 0, S(D̂j ) = −D̂j

iaD̂n +
√

1 − a2D̂µD̂µ

1 − a2D̂kD̂k

,

and the property S2(D̂µ) = D̂µ, all operations of the full Euclidean Hopf algebra SOa(n)

have been defined.
The square of the Dirac derivative is not identical to the Laplace operator, but

D̂µD̂µ = �̂
(
1 − a2

4 �̂
)
. However, having in mind the caveats below equations (21) and (24)
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we could rescale the Dirac derivative D̂′
µ = D̂µ√

1− a2
4 �̂

such that D̂′
µD̂′

µ = �̂. We do not follow

this train of thought in this paper.
We also quote the antipode S(�̂) = �̂ of the Laplace operator, its commutators with

coordinates [�̂, x̂µ] = 2D̂µ and its Leibniz rule

�̂ (f̂ · ĝ) = (�̂f̂ ) · (e−ia∂̂n ĝ) + (eia∂̂n f̂ ) · (�̂ĝ)

+ 2(D̂i eia∂̂n f̂ ) · (D̂i ĝ) +
2

a2
((1 − eia∂̂n )f̂ ) · ((1 − e−ia∂̂n )ĝ). (28)

In (28) we have used the identities:

e−ia∂̂n = −iaD̂n +
√

1 − a2D̂µD̂µ = 1 − iaD̂n − a2

2
�̂,

(29)

eia∂̂n =
iaD̂n +

√
1 − a2D̂µD̂µ

1 − a2D̂j D̂j

.

There are also further invariants, such as in four-dimensional κ-Minkowski spacetime
the Pauli–Lubanski vector, which has been discussed in [2] and in [16] in the bicrossproduct
basis. From (12) and (23) the generalization of the Pauli–Lubanski vector in n = 2m Euclidean
dimensions can be deduced:

W 2
i+1 = Wµ1···µ2i−1Wµ1···µ2i−1 , W 2

1 = D̂µD̂µ, i = 1, . . . ,
n − 2

2
,

(30)
Wµ1···µ2i−1 = εµ1···µn

Mµ2iµ2i+1 · · · Mµn−2µn−1D̂µn
.

All invariants should be identical to their undeformed counterparts, exchanging ordinary
derivatives with the Dirac derivative. The reason is that the algebra sector in our particular
basis of SOa(n) is undeformed.

3. Star product and operator representations

3.1. Different �-products

In this section we represent the associative algebra of functions of noncommuting coordinates
as an algebra of functions of commuting variables by means of �-products. This allows
a representation of the generators D̂µ and Mµν of the Hopf algebra SOa(n) in terms of
differential operators of ordinary, commuting derivatives and coordinates. The representation
by means of �-products is particularly suitable, since it allows an expansion order by order
in a.

The �-product replaces the point-wise product of commutative spacetime. For a given
noncommutative associative algebra of coordinates, there are generically several different
�-products fulfilling

[xµ �, xν] = xµ � xν − xν � xµ = iCµν
λ xλ, if [x̂µ, x̂ν] = iCµν

λ x̂λ (31)

in the Lie algebra case for example. Many interesting �-products simply reproduce different
ordering prescriptions imposed on the abstract algebra of coordinates. For noncommutative
coordinates the order in a monomial has to be specified, otherwise one would miscount
the elements of the basis of monomials. After multiplying two functions of noncommutative
variables, the product has to be reordered according to the chosen prescription. The �-products
of interest here perform this reordering for commuting coordinates xµ.

In the case of κ-deformed space with only one noncommuting coordinate x̂n, three
ordering prescriptions can be chosen in a generic way: all factors of x̂n to the far left, all
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factors of x̂n to the far right or complete symmetrization of all coordinates. We are especially
interested in the symmetric �-product because of its Hermiticity:

f (x) � g(x) = g(x) � f (x). (32)

Note that we set f (x) � g(x) ≡ (f � g)(x), in other words we omit the multiplication map of
the usual definition of the �-product. This abuse of the usual notation allows us to simplify
the coproduct formulae in the following.

An important condition on a �-product is that it is associative. For Lie algebra models
such as κ-deformed space with symmetric ordering, the Baker–Campbell–Hausdorff (BCH)
formula can be used to obtain an associative symmetric �-product. The BCH expansion
involves the structure constants of the Lie algebra (1):

f (x) � g(x) = exp

(
i

2
xλC

µν
λ ∂µ ⊗ ∂ν +

1

12
xλC

ρσ
λ Cµν

ρ (∂σ ⊗ 1 − 1 ⊗ ∂σ )∂µ ⊗ ∂ν

+
i

24
xλC

αβ

λ Cρσ
α Cµν

ρ ∂β∂µ ⊗ ∂σ ∂ν + · · ·
)

f (y) ⊗ g(z)|y,z→x. (33)

Generically there is no closed symbolical form, such as the Moyal–Weyl product, for
�-products of Lie algebra noncommutative spaces. For the κ-deformed space, however,
there exists a closed formula, as we will show in the following. This result has been found
before [17, 18]. For our derivation we use the notion of equivalent �-products. Two �-products
� and �′ are equivalent if they can be related by a differential operator T:

T (f (x) � g(x)) = T (f (x)) �′ T (g(x)). (34)

For example, �-products which represent the same algebra with a different ordering
prescription are equivalent. We use this fact to relate the symmetric �-product to the normal
ordered �-products. These in turn can be derived via a Weyl quantization procedure (cf [11]):

f (x) �L g(x) = lim
y→x
z→x

exp

(
xj ∂

∂yj

(
e−ia ∂

∂zn − 1
))

f (y)g(z),

(35)

f (x) �R g(x) = lim
y→x
z→x

exp

(
xj ∂

∂zj

(
eia ∂

∂yn − 1
))

f (y)g(z).

The �-product �L reproduces an ordering for which all x̂n stand on the left-hand side in any
monomial; �R reproduces the opposite ordering prescription. For our derivation we need
several formulae, which follow from (35) and from properties of the BCH formula (cf [19]):

xj �L f (x) = xj e−ia∂nf (x), f (x) �L xj = xjf (x),

xn �L f (x) = xnf (x), f (x) �L xn = (xn − iaxk∂k)f (x),

xj �R f (x) = xjf (x), f (x) �R xj = xj eia∂nf (x),

xn �R f (x) = (xn + iaxk∂k)f (x), f (x) �R xn = xnf (x). (36)

xj � f (x) = xj ia∂n

eia∂n − 1
f (x), f (x) � xj = xj −ia∂n

e−ia∂n − 1
f (x),

xn � f (x) =
(

xn − xk∂k

∂n

(
ia∂n

eia∂n − 1
− 1

))
f (x),

f (x) � xn =
(

xn − xk∂k

∂n

( −ia∂n

e−ia∂n − 1
− 1

))
f (x).
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The operator T up to first order in a has to be of the form T = 1 + iacxj ∂j ∂n + · · ·, with a
real constant c to be determined. Note that T also depends on the coordinates xj . We obtain
T (xµ) = xµ and for the left ordered �-product �L

T (xj �L g(x)) = T (xj ) � T (g(x)) ⇒ T (xj eia∂nf (x)) = xj ia∂n

eia∂n − 1
T (f (x)). (37)

Formula (37) can be written as a differential equation with the unique solution

T = lim
z→x

exp

(
zj ∂xj

( −ia∂n

e−ia∂n − 1
− 1

))
, T −1 = lim

z→x
exp

(
zj ∂xj

(
e−ia∂n − 1

−ia∂n

− 1

))
,

(38)

demanding that T · T −1 = 1.
Similar equivalence operators T̃ can be constructed relating � and �R, T̃ (f �R g) =

T̃ (f ) � T̃ (g). The result is T̃ = limz→x exp
(
zj ∂xj

( ia∂n

eia∂n −1 − 1
))

.
With this solution for T we construct the symmetric �-product:

f (x) � g(x) = lim
y→x
z→x

T (T −1(f (z)) �L T −1(g(y)))

= lim
w→x

exp

(
xj∂wj

( −ia∂wn

e−ia∂wn − 1
− 1

))
lim
z→w
y→w

exp(wj∂zj (e−ia∂yn − 1))

× lim
u→z
t→y

(
exp

(
zj ∂uj

(
e−ia∂un − 1

−ia∂un

− 1

))
f (u)

)

×
(

exp

(
yj∂tj

(
e−ia∂tn − 1

−ia∂tn
− 1

))
g(t)

)
. (39)

Contracting all limits, this result is written in a compact way (∂n = ∂yn + ∂zn):

f (x) � g(x) = lim
y→x
z→x

exp

(
xj∂yj

(
∂n

∂yn

e−ia∂zn
1 − e−ia∂yn

1 − e−ia∂n
− 1

)

+ xj ∂zj

(
∂n

∂zn

1 − e−ia∂zn

1 − e−ia∂n
− 1

))
f (y)g(z). (40)

3.2. Representation of derivatives and generators of rotations

The symmetry algebra of κ-deformed space, i.e. the generators of rotations and the Dirac
derivatives, can be represented as differential operators on spaces of commuting variables
with the symmetric �-product as multiplication:

∂̂nf̂ −→ ∂∗
nf (x) = ∂nf (x),

∂̂j f̂ −→ ∂∗
j f (x) = ∂j

(
eia∂n − 1

ia∂n

)
f (x),

Nlf̂ −→ N∗lf (x) =
(

xl∂n − xn∂l + xl∂µ∂µ

eia∂n − 1

2∂n

− xµ∂µ∂l

eia∂n − 1 − ia∂n

ia∂2
n

)
f (x),

Mrsf̂ −→ M∗rsf (x) = (xs∂r − xr∂s)f (x),

D̂nf̂ −→ D∗
nf (x) =

(
1

a
sin(a∂n) − 1

ia∂n∂n

∂k∂k(cos(a∂n) − 1)

)
f (x),
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D̂j f̂ −→ D∗
j f (x) = ∂j

(
e−ia∂n − 1

−ia∂n

)
f (x),

�̂f̂ −→ � ∗f (x) = ∂µ∂µ

2(1 − cos(a∂n))

a2∂n∂n

f (x).

(41)

This representation can be derived in a perturbation expansion on symmetrized monomials
multiplied with the �-product. However, it is easier to derive it using the expressions xµ �f (x)

in (36). Rewriting these expressions symbolically as x∗µf (x), relations such as

[∂∗
j , x∗n]f (x) = ∂∗

j x∗nf (x) − x∗n∂∗
j f (x)

!= ia∂∗
j f (x) (42)

have to be fulfilled for arbitrary f (x). Note that all operators in (41) coincide to zeroth order
in a with their commutative counterparts.

Similar representations can be derived for the normal ordered �-products. These
representations have to be different from (41), since the same abstract algebra of ∂̂µ, D̂µ,Mrs

and Nl is represented on different, but equivalent �-products. The different �-representations
can be related with equivalence operators, via ∂

∗L

j = T −1∂∗
j T etc.

For the left ordered �-product (�L) we obtain

∂∗L

n f (x) = ∂nf (x),

∂
∗L

j f (x) = ∂j eia∂nf (x),

N∗L lf (x) =
(

xl 1

a
sin(a∂n) − xn∂l eia∂n +

ia

2
xl∂k∂k eia∂n

)
f (x),

M∗L rsf (x) = (xs∂r − xr∂s)f (x), (43)

D∗L

n f (x) =
(

1

a
sin(a∂n) +

ia

2
∂k∂k eia∂n

)
f (x),

D
∗L

j f (x) = ∂jf (x),

� ∗Lf (x) =
(
− 2

a2
(cos(a∂n) − 1) + ∂k∂k eia∂n

)
f (x).

The result for the right ordered �-product (�R) is

∂∗R

n f (x) = ∂nf (x),

∂
∗R

j f (x) = ∂jf (x),

N∗Rlf (x) =
(

xl 1

2 ia
(e2ia∂n − 1) − xn∂l − iaxk∂k∂l +

ia

2
xl∂k∂k

)
f (x),

M∗R rsf (x) = (xs∂r − xr∂s)f (x), (44)

D∗R

n f (x) =
(

1

a
sin(a∂n) +

ia

2
∂k∂k e−ia∂n

)
f (x),

D
∗R

j f (x) = ∂j e−ia∂nf (x),

� ∗Rf (x) =
(
− 2

a2
(cos(a∂n) − 1) + ∂k∂k e−ia∂n

)
f (x).

Summarizing the ambiguities of our construction: we have made the choice that the
SOa(n) Hopf algebra is the one with undeformed algebra sector. Equation (11) followed
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uniquely from (2). In contrast, we have made an arbitrary choice following (24), choosing the
simplest Dirac derivative out of a continuous range of solutions. The only other choice is the
�-product to represent the abstract algebra. Hermiticity is a strong argument for favouring the
symmetric �-product.

4. Forms

4.1. Vector-like transforming one-forms

A crucial ingredient of a geometric approach towards the κ-deformed space is the exterior
differential, denoted by d. In order to find a representation of d, a working definition of a
one-form is needed.

The expected properties of d are

• nilpotency: d2 = 0;
• application of d to a coordinate gives a one-form [d, x̂µ] = ξ̂ µ;
• invariance under SOa(n): [Mrs, d] = 0, [Nl, d] = 0;
• undeformed Leibniz rule: d(f̂ · ĝ) = (df̂ ) · ĝ + f̂ · dĝ.

Demanding invariance of d under SOa(n), a natural ansatz is that the Dirac derivative D̂µ is
the convenient derivative dual to a set of vector-like transforming one-forms ξ̂ µ, d = ξ̂ µD̂µ:

[Mrs, ξ̂µ] = δrµξ̂ s − δsµξ̂ r , [Nl, ξ̂µ] = δnµξ̂ l − δlµξ̂ n. (45)

The nilpotency of d2 = 0 can be achieved requiring that one-forms ξ̂ µ commute with
derivatives and anti-commute among themselves {ξ̂ µ, ξ̂ ν} = 0.

Demanding that the commutator of d with a coordinate is a one-form, [d, x̂µ] = ξ̂ µ is a
sufficient condition for an undeformed Leibniz rule of d.

If we add the condition that the commutators [ξ̂ µ, x̂ν] close in the space of one-forms
alone, there is no differential calculus consisting of n one-forms fulfilling all these conditions
simultaneously. Under this additional condition, a familiar result (e.g. [14]) states that the
basis of one-forms is (n + 1)-dimensional.

There have been hints towards this result in our discussion of the Dirac operator (25). Its
commutator with the coordinates [D̂µ, x̂ν] is a power series in the Dirac derivative alone, but
it is linear when adding the Laplace operator �̂. The (n + 1)-dimensional set of derivatives
(D̂µ, �̂) is dual to the (n + 1)-dimensional set of one-forms (d̂x

µ
, φ̂) introduced in [14]

d = d̂x
n
D̂n + d̂x

j
D̂j − a2

2
φ̂ �̂, [d, x̂µ] = d̂x

µ
,

[d̂x
n
, x̂n] = a2φ̂, [d̂x

j
, x̂n] = 0, [φ̂, x̂n] = −d̂x

n
, (46)

[d̂x
n
, x̂i] = iad̂x

i
, [d̂x

j
, x̂i] = −iaδij d̂x

n
+ a2 δij φ̂, [φ̂, x̂i] = −d̂x

i
.

It is a frequent observation in noncommutative geometry that the set of one-forms on a
particular space has one element more than in the commutative setting. In our case this
is acceptable at first sight since for a → 0, d → dclass. But several problems remain.
Only n one-forms can be obtained by applying d to the coordinates. A gauge theory with
gauge potentials as one-forms would result in an additional degree of freedom in the gauge
potentials. The cohomology of the differential calculus has an entirely different structure than
in the commutative case.

We will therefore follow a different strategy and demand as a central condition that there
are only n one-forms on the noncommutative space. Of course we will not get this condition
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for free; there will be a trade-off of the kind that the one-forms ξ̂ µ will have derivative-valued
commutation relations with the coordinates.

To calculate the one-forms, we start from their commutators with the coordinates

ξ̂ ν != [d, x̂ν] = [ξ̂ µD̂µ, x̂ν] = [ξ̂ µ, x̂ν]D̂µ + iaξ̂nD̂ν + ξ̂ ν(−iaD̂n +
√

1 − a2D̂µD̂µ)). (47)

From (47) follows that the commutator [ξ̂ µ, x̂ν] will involve derivatives. To calculate it we
have made a general ansatz with derivative-valued commutators [ξ̂ µ, x̂ν] involving all terms
compatible with the index structure. The result is derived requiring that the commutators
[ξ̂ µ, x̂ν] are compatible with (2). Invariance under SOa(n) rotations does not add further
constraints and we find the unique solution

[ξ̂ µ, x̂ν] = ia(δµnξ̂ ν − δµν ξ̂ n) + (ξ̂µD̂ν + ξ̂ νD̂µ − δµν ξ̂ ρD̂ρ)
1 −

√
1 − a2D̂σ D̂σ

D̂λD̂λ

. (48)

As an aside note that 1−
√

1−a2D̂σ D̂σ

D̂λD̂λ
= a2

2
1

1− a2
4 �̂ .

The price we have to pay for having only n one-forms is that the commutator (48) is
highly nonlinear in the Dirac derivative.

It is possible to generalize one of the conditions for the differential calculus, the
undeformed Leibniz rule [d, x̂µ] = ξ̂ µ. We define commutation relations between a second
set of one-forms ξ̃ µ and coordinates x̂ν , consistent with (2) and (12). For these one-forms
ξ̃ µ the application of d to a coordinate does not return the one-form, but a derivative-valued
expression

[̃ξnD̂n + ξ̃ j D̂j , x̂
ν] = [d, x̂ν] = (dx̂)ν = ξ̃ ν · f (D̂n, D̂j D̂j ), (49)

with a suitable function of the Dirac derivative f (D̂n, D̂j D̂j ).
The most general solution for (49) is

[d, x̂ν] = ξ̃ ν + c′̃ξν

(
1√

1 − a2D̂σ D̂σ

− 1

)

[̃ξµ, x̂ν] = ia(δµnξ̃ ν − δµν ξ̃ n) + (1 − c′)(̃ξµD̂ν + ξ̃ νD̂µ − δµν ξ̃ ρD̂ρ)
1 −

√
1 − a2D̂σ D̂σ

D̂λD̂λ

+ c′ ξ̃ νD̂µ

a2√
1 − a2D̂λD̂λ

,

(50)

for an arbitrary constant c′. The solution (48) corresponds to c′ = 0 and we will use it
exclusively in the following.

With (48) it is very difficult to calculate the action of d on a general x-dependent one-form
αµ(x̂)ξ̂µ:

dα = d(αµ(x̂)ξ̂µ) = ξ̂ ν(D̂ναµ(x̂))ξ̂µ �= (D̂ναµ(x̂))ξ̂ ν ξ̂µ. (51)

However, a general one-form may be defined in such a way that ξ̂ µ stands to the left of the
coefficient function:

dα = d(ξ̂µαµ(x̂)) = ξ̂ ν ξ̂ µ(D̂ναµ(x̂)). (52)

Still it is interesting to see whether there are one-forms which allow an action of d as in (51),
independent of the order. This motivates the introduction of a second basis of one-forms,
which we call the frame.
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4.2. Representation of ξ̂ µ

In analogy with the approach in section 3.2 we now derive a representation of the one-forms
ξ̂ µ → ξ ∗µ in the �-product setting.

The starting point is the commutator (48), which involves a power series expansion in the
derivatives. This implies that the ξ ∗µ can be written as functions of the commutative one-forms
dxµ and the commutative derivatives ∂ν . The one-forms ξ ∗µ should be at most linear in dxµ.

We make the most general ansatz compatible with the index structure

ξ ∗n = dxne1(∂i∂i, ∂n) + dxk∂ke2(∂i∂i, ∂n),
(53)

ξ ∗j = dxjf1(∂i∂i, ∂n) + dxn∂jf2(∂i∂i, ∂n) + dxk∂k∂jf3(∂i∂i, ∂n).

We have stated in (42) how to calculate the representation of a derivative operator from its
commutator with a coordinate. We collect the terms proportional to different one-forms dxµ

and different combinations of derivatives. We obtain an overdetermined system of equations
which can be solved consistently. With the abbreviation

γ = 1

1 + ∂µ∂µ

2∂2
n

(cos(a∂n) − 1)
, (54)

we obtain the result

f1 = γ, e1 =
(

1 + cos(a∂n) − ∂k∂k

∂2
n

(cos(a∂n) − 1)

)
γ 2,

f2 = − 2i

∂n

sin(a∂n)γ
2, e2 = 2i

∂n

sin(a∂n)γ
2, (55)

f3 = − 1

∂2
n

(cos(a∂n) − 1)γ 2,

or

ξ ∗n =
(

dxn(1 + cos(a∂n) − ∂k∂k

∂2
n

(cos(a∂n) − 1) + dxk 2i∂k

∂n

sin(a∂n)

)
γ 2,

(56)

ξ ∗j =
(

dxj

(
1 +

∂µ∂µ

2∂2
n

(cos(a∂n) − 1)

)
− dxn 2i∂j

∂n

sin(a∂n)

− dxk 2∂k∂j

∂2
n

(cos(a∂n) − 1)

)
γ 2.

The more general differential calculus (50) has a particularly simple solution for c′ = 1.
The one-forms ξ̃ µ for c′ = 1 have the following �-representation ξ̃ ∗µ:

ξ̃ ∗n =
(

dxn + dxl ∂l

∂n

(1 − e−ia∂n)

)
1

1 + ∂µ∂µ

2∂2
n

(cos(a∂n) − 1)
,

(57)

ξ̃ ∗j =
(

−dxl ∂l∂j

∂n∂n

(cos(a∂n) − 1) + dxn ∂j

∂n

(1 − e−ia∂n)

)
1

1 + ∂µ∂µ

2∂2
n

(cos(a∂n) − 1)
.

It is interesting to note that for this specific set of differentials ξ̃ ∗µ we obtain a representation
on the space of functions multiplied with the �-product, where ξ̃ ∗j is not proportional to dxj .

4.3. Frame one-forms

We have defined one-forms ξ̂ µ with vector-like transformation behaviour under SOa(n).
Alternatively we can define one-forms starting from the condition that they commute with
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coordinates [ω̂µ, x̂ν] = 0 and therefore with all functions. We make the ansatz

ξ̂ n = ω̂ng1(D̂n, D̂lD̂l) + ω̂j D̂jg2(D̂n, D̂lD̂l),
(58)

ξ̂ i = ω̂nD̂ih1(D̂n, D̂lD̂l) + ω̂ih2(D̂n, D̂lD̂l) + ω̂j D̂j D̂ih3(D̂n, D̂lD̂l),

with functions of the Dirac derivative with appropriate index structure and expand (48). Since
we assume that ω̂µ commute with the coordinates, we can reduce the result to commutators
of the functions of derivatives ga and ha with the coordinates. With the abbreviations

ζ1 = 1√
1 − a2D̂µD̂µ

, ζ2 =
1 −

√
1 − a2D̂µD̂µ

D̂σ D̂σ

, ζ3 = −iaD̂n +
√

1 − a2D̂µD̂µ,

(59)

and the identities
∂

∂D̂n

ζ2 = D̂nζ1ζ
2
2 ,

∂

∂D̂j D̂j

ζ2 = 1

2
ζ1ζ

2
2 ,

∂

∂D̂n

ζ3 = −iaζ1ζ3, (60)

equation (48) can be rewritten as a system of differential equations for g1, g2, h1, h2 and h3.
Its solution is

g1 = (
1 + D̂j D̂j ζ2ζ

−1
3

)a2

2
ζ2, h1 = (−ia − D̂nζ2)

a2

2
ζ2ζ

−1
3 ,

g2 = (ia + D̂nζ2)
a2

2
ζ2ζ

−1
3 , h2 = a2

2
ζ2,

h3 = a2

2
ζ 2

2 ζ−1
3 .

(61)

Writing the differential d in terms of the frame one-forms ω̂µ we obtain

d = ξ̂ µD̂µ = (
ω̂nD̂n − iaω̂nD̂lD̂lζ

−1
3 + ω̂j D̂j ζ

−1
3

)a2

2
ζ2

=

ω̂nD̂n +

ω̂j D̂j − iaω̂nD̂lD̂l

−iaD̂n +
√

1 − a2D̂µD̂µ


 a2

2

1 −
√

1 − a2D̂σ D̂σ

D̂λD̂λ

. (62)

We can simplify this result using the Laplace operator �̂ and the derivatives ∂̂µ

d =
(

ω̂n

(
1

a
sin(a∂̂n) − ia

2
∂̂l ∂̂l e−ia∂̂n

)
+ ω̂j ∂̂j

)
1

1 − a2

4 �̂
. (63)

To determine the transformation behaviour of ω̂µ under SOa(n)-rotations, we first
consider the derivative operators dual to ω̂µ. The factor 1

1− a2
4 �̂ is an invariant under SOa(n)-

rotations by itself. We define

∂̃j = ∂̂j , ∂̃n = 1

a
sin(a∂̂n) − ia

2
∂̂j ∂̂j e−ia∂̂n . (64)

By means of (17) we can calculate

[Mrs, ∂̃j ] = δr
j ∂̃s − δs

j ∂̃r ,

[Mrs, ∂̃n] = 0,
(65)

[Nl, ∂̃j ] = −δl
j ∂̃n

√
1 − a2∂̃µ∂̃µ − iaδl

j ∂̃µ∂̃µ + ia∂̃j ∂̃l ,

[Nl, ∂̃n] = ∂̃l(ia∂̃n +
√

1 − a2∂̃µ∂̃µ).



9764 M Dimitrijević et al

The derivatives ∂̃µ are a module of SOa(n) and [Nl, ∂̃µ∂̃µ] = 0. Comparing with (29) we find

e−ia∂̂n =
−ia∂̃n +

√
1 − a2∂̃µ∂̃µ

1 − a2∂̃k ∂̃k

, eia∂̂n = ia∂̃n +
√

1 − a2∂̃µ∂̃µ, (66)

and the coproducts are

∂̃j (f̂ · ĝ) = ∂̃j (f̂ ) · ĝ + (eia∂̂n f̂ ) · (̃∂j ĝ),
(67)

∂̃n(f̂ · ĝ) = ∂̃n(f̂ ) · (e−ia∂̂n ĝ) + (eia∂̂n f̂ ) · (̃∂nĝ) − ia(̃∂kf̂ ) · (e−ia∂̂n ∂̃kĝ).

For compactness, we have used (66) to write (67). We find ∂̃µ∂̃µ = D̂µD̂µ. Therefore the

Laplace operator �̂ can be written in terms of ∂̃µ as �̂ = 2
a2 (1 −

√
1 − a2∂̃µ∂̃µ). Note that

∂̃µ = S(D̂µ), the antipode of the Dirac derivative. Thus, we can write (63) purely in terms of
ω̂µ and ∂̃µ:

d = (ω̂n∂̃n + ω̂j ∂̃j )
2

1 +
√

1 − a2∂̃µ∂̃µ

. (68)

Comparing with (51), we can now evaluate the action of the differential on an arbitrarily
ordered one-form

dα = d(αµ(x̂)ω̂µ) =

 2̃∂ν

1 +
√

1 − a2∂̃λ∂̃λ

αµ(x̂)


 ω̂νω̂µ. (69)

From (65) we can calculate the transformation behaviour of ω̂µ from the requirement that
d is an invariant:

[Mrs, ω̂n] = 0, [Nl, ω̂n] = ω̂l

√
1 − a2∂̃µ∂̃µ + ia(ω̂l ∂̃n − ω̂n∂̃l),

[Mrs, ω̂j ] = δrj ω̂s − δsj ω̂r , [Nl, ω̂j ] = −δlj ω̂n

√
1 − a2∂̃µ∂̃µ + ia(ω̂l ∂̃j − ω̂j ∂̃l).

The frame one-forms form a module of SOa(n) rotations.
The commutation relations between derivatives ∂̃µ and coordinates are

[̃∂j , x̂
n] = ia∂̃j , [̃∂n, x̂

n] =
−ia3∂̃s ∂̃s ∂̃n +

√
1 − a2∂̃µ∂̃µ

1 − a2∂̃k ∂̃k

,

(71)

[̃∂j , x̂
i] = δi

j , [̃∂n, x̂
i] = −ia∂̃i

−ia∂̃n +
√

1 − a2∂̃µ∂̃µ

1 − a2∂̃k ∂̃k

.

Taking into account 2

1+
√

1−a2 ∂̃µ∂̃µ

in the commutator with the coordinates, we define

�ν = 2̃∂ν

1+
√

1−a2 ∂̃µ∂̃µ

as the derivatives dual to ω̂µ. Using 2

1+
√

1−a2 ∂̃µ∂̃µ

= 1 + a2

4 �µ�µ, we obtain

[�j , x̂
n] = ia

2
�j

(
1 +

a2

4
�µ�µ

)(
1 +

(
1 − ia�n − a2

4 �ν�ν

)(
1 + a2

4 �λ�λ

)
1 + a2

4 �ρ�ρ − a2�k�k

)
,

[�j , x̂
i] = δi

j

(
1 +

a2

4
�µ�µ

)
+

a2

2
�i�j · 1 − ia�n − a2

4 �ν�ν

1 + a2

4 �ρ�ρ − a2�k�k

,
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[�n, x̂
i] = − ia

2
�i

(
1 +

1 − a2

4 �ν�ν

1 + a2

4 �λ�λ

+
ia

2
�n

1

1 + a2

4 �ρ�ρ

)
,

[�n, x̂
n] =

(
1 +

a2

4
�µ�µ

)
·
(

1 +
− ia3

8 �s�s�n +
(
1 − a2

4 �µ�µ

)(
1 + a2

4 �ν�ν

)2(
1 + a2

4 �ρ�ρ

)2(
1 +

(
a2

4 �σ�σ

)2
+ a2

2 (�n�n − �k�k)

)
.

(72)

These complicated commutators are the price we have to pay for the fact that frame one-forms
commute with all functions.

4.4. Volume form

The result (48) allows us to calculate the commutation relations of higher-order forms
ξ̂ µ1 · · · ξ̂ µj with the coordinates. We can therefore calculate two-forms, three-forms etc up to
n-forms, the full Hodge differential calculus.

Since we know that the ξ̂ µ anti-commute among themselves, the dimension of the set of
j -forms is

(
n

j

)
. From the vector-like transformation behaviour of ξ̂ µ (45) follows that j -forms

transform as j -tensors. Specifically, there is only one n-form ξ̂ 1ξ̂ 2 · · · ξ̂ n, which should be
a noncommutative analogue of the volume form. It has particularly simple properties; from
(48) we can calculate the commutator

[ξ̂ 1ξ̂ 2 · · · ξ̂ n, x̂µ] = nξ̂ 1ξ̂ 2 · · · ξ̂ nD̂µ

1 −
√

1 − a2D̂σ D̂σ

D̂λD̂λ

. (73)

The volume form ξ̂ 1ξ̂ 2 · · · ξ̂ n is invariant under SOa(n): [Mµν, ξ̂ 1ξ̂ 2 · · · ξ̂ n] = 0.
In contrast to this result, the n-form built from n different frame one-forms ω̂1ω̂2 · · · ω̂n is

not invariant under SOa(n): [Nl, ω̂1ω̂2 · · · ω̂n] = −ia(n − 1)ω̂1ω̂2 · · · ω̂n∂̂l .
The �-representation of the volume form is

(ξ 1ξ 2 · · · ξn)∗ = dx1dx2 · · · dxn(
1 + ∂µ∂µ

2∂2
n

(cos(a∂n) − 1)
)n

, (74)

while the representation of the frame n-form is simply (ω1ω2 · · ·ωn)∗ = dx1dx2 · · · dxn.

5. Vector fields

5.1. Linearly transforming vector fields and conjugation

The aim of our work is to define physical field theories. Vector fields that have the same
transformation properties as derivatives under SOa(n) are a necessary ingredient for the
definition of gauge theories.

The central assumption is that the transformation behaviour of vector fields is such that
the vector fields appear linearly on the right-hand side of the commutation relations.

Vector fields analogous to the vector-like transforming Dirac derivative are obviously

[Mrs, V̂n] = 0, [Mrs, V̂i] = δr
i V̂

s − δs
i V̂

r ,
(75)

[Nl, V̂n] = V̂ l, [Nl, V̂i] = −δl
i V̂n,

these vector fields V̂µ are a module of SOa(n) rotations.
It is more difficult to find vector fields with transformation properties analogous to the

other derivatives that we have defined throughout this paper. Although we have argued that
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the derivatives ∂̂µ are in a sense irrelevant for the geometric construction of κ-deformed space,
they have an important role to play in making contact with the commutative regime. Since
∂̂n = ∂n on all three �-products, these derivatives ∂̂µ provide information on the connection
between the abstract algebra and �-product representation. Therefore we now investigate
vector fields Âµ analogous to ∂̂µ. By this we mean that we construct the tramsformation law
of Âµ in such a way that it conicides with (17), when Âµ is re-substituted with ∂̂µ. At the
same time Âµ must be a module of SOa(n) rotations. We make the choice that derivatives
are always to the left of the vector field Âµ in nonlinear expressions such as the vector field
analogue of (17). We stress that Âµ is treated as an element of an abstract algebra in this
approach. Therefore derivatives are not evaluated on Âµ in terms of the coproduct.

The problem can be solved in a power series expansion in a. This results in a recursion
formula with the solution6:

[Mrs, Âi] = δr
i Âs − δs

i Âr , [Mrs, Ân] = 0,

[Nl, Âi] = δl
i

1 − e2ia∂̂n

2 ia∂̂n

Ân − ia

2
δl
i ∂̂j Âj +

ia

2
(∂̂lÂi + ∂̂i Âl)

− δl
i

a

2∂̂n

tan

(
a∂̂n

2

)
(∂̂n∂̂j Âj − ∂̂j ∂̂j Ân) (76)

+

(
1

∂̂2
n

− a

2∂̂n

cot

(
a∂̂n

2

))
(∂̂n∂̂iÂl + ∂̂n∂̂lÂi − 2∂̂l ∂̂i Ân),

[Nl, Ân] = Âl .

The square of the vector field corresponding to the Dirac derivative is an invariant
[Mµν, V̂λV̂λ] = 0. To form an invariant out of the vector field Âµ, we have to define a
vector field Ăµ with transformation laws in which the derivatives are to the right of the vector
field Ăµ. We demand

[Mrs, ĂλÂλ] = 0, and [Nl, ĂλÂλ] = 0. (77)

From (76) we can construct the transformation laws for Ăµ such that (77) is fulfilled:

[Mrs, Ăi] = δr
i Ăs − δs

i Ăr , [Mrs, Ăn] = 0,

[Nl, Ăi] = −δl
i Ăn +

ia

2
Ăl ∂̂i − ia

2
Ăi ∂̂l − ia

2
δl
i Ăj ∂̂j +

a

2
Ăl tan

(
a∂̂n

2

)
∂̂i

(78)

− (
δl
i Ăj ∂̂j + Ăi ∂̂l

)( 1

∂̂n

− a

2
cot

(
a∂̂n

2

))
,

[Nl, Ăn] = Ăl

e2ia∂̂n − 1

2ia∂̂n

− Ăl

a

2∂̂n

tan

(
a∂̂n

2

)
∂̂j ∂̂j + 2Ăj

(
1

∂̂2
n

− a

2∂̂n

cot

(
a∂̂n

2

))
∂̂l ∂̂j .

With this transformation law the vector fields Ăµ are a module of SOa(n) rotations.
All relations considered up to now are invariant under the conjugation

(x̂µ)† = x̂µ, (∂̂µ)† = −∂̂µ,

(Mrs)† = −Mrs, (Nl)† = −Nl.
(79)

Comparing (76) and (78), we see that Ăµ transforms with the derivatives on the right-hand
side, but Ă†

µ �= Âµ, they transform in different ways. The transformation for Â†
µ is simply

6 This solution is not unique. If the symmetrization in the third term of [Nl, Âi ] is not performed, the last term of
[Nl, Âi ] vanishes.
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(76), with all Âµ standing to the far right in any expression replaced by Â†
µ standing to the far

left.
The dual of Â†

µ is Ă†
µ,

[
Nl, Â†

µĂ†
µ

] = [
Mrs, Â†

µĂ†
µ

] = 0. The dual vector field Ă†
µ

transforms as in (78), with all Ăµ standing to the far left in any expression replaced by Ă†
µ

standing to the far right.

5.2. Vector fields related to frame one-forms

In the same manner as we derived the vector fields corresponding to ∂̂µ, we can also calculate
vector fields Ãµ, corresponding to ∂̃µ, the derivative dual to the frame one-forms up to the
factor 1

1− a2
4 �̂ . The calculation is much simpler and we obtain

[Mrs, Ãi] = δr
i Ãs − δs

i Ãr , [Mrs, Ãn] = 0,

[Nl, Ãi] = −δl
i

√
1 − a2∂̃µ∂̃µÃn + ia∂̃iÃl − iaδl

i ∂̃µÃµ, (80)

[Nl, Ãn] = (ia∂̃n +
√

1 − a2∂̃µ∂̃µ)Ãl .

From (80) we could read off immediately the transformation behaviour of Ã†
µ, but comparing

with ˜̆Aµ, which can be obtained from the invariant

[Mrs, ˜̆AµÃµ] = 0, and [Nl, ˜̆AµÃµ] = 0, (81)

we find that Ã†
µ = ˜̆Aµ:[

Mrs, Ã
†
i

] = δr
i Ã

†
s − δs

i Ã
†
r ,

[
Mrs, Ã†

n

] = 0,[
Nl, Ã

†
i

] = −δl
i Ã

†
n

√
1 − a2∂̃µ∂̃µ + iaÃ

†
l ∂̃i − iaδl

i Ã
†
µ∂̃µ, (82)[

Nl, Ã†
n

] = Ã
†
l (ia∂̃n +

√
1 − a2∂̃µ∂̃µ).

In this sense, the vector field Ãµ is self-dual.

5.3. Derivative-valued vector fields

We will now show that Âµ, Ăµ, Ă†
µ and Â†

µ can be obtained from the vector field V̂µ by
a derivative-valued map V̂µ = êµνÂν , Âµ = (ê−1)µνV̂ν . This is a change in the basis of
derivatives, êµν = êµν(∂) depends on the derivatives.

We know the transformation properties of V̂µ, Âµ and ∂̂µ, (75), (76) and (17). We expand
these in powers of a, at zeroth order we assume that V̂ µ|O(a0) = Âµ|O(a0) are the same vector
field. We obtain a recursion formula in a that can be solved:

ênn = 1

a∂̂n

sin(a∂̂n) + e−ia∂̂n

(
ia

2
− i

∂̂n

tan

(
a∂̂n

2

))
∂̂k ∂̂k

∂̂n

,

ênj = i

∂̂n

e−ia∂̂n tan

(
a∂̂n

2

)
∂̂j ,

(83)

êln =
(

e−ia∂̂n − 1 − e−ia∂̂n

ia∂̂n

)
∂̂l

∂̂n

,

êlj = 1 − e−ia∂̂n

ia∂̂n

δlj .



9768 M Dimitrijević et al

To find the inverse of the matrix êµν , we have to take care to single out the right partial
derivatives. The result is

(ê−1)nn = F−1(∂̂µ)
e−ia∂̂n − 1

−ia∂̂n

,

(ê−1)nj = F−1(∂̂µ)

(
− i

∂̂n

e−ia∂̂n tan

(
a∂̂n

2

))
∂̂j ,

(ê−1)ln = F−1(∂̂µ)

(
e−ia∂̂n − 1

−ia∂̂n

− e−ia∂̂n

)
∂̂l ,

(ê−1)lj = −ia∂̂n

e−ia∂̂n − 1
δlj +

i
∂̂2
n

e−ia∂̂n tan
(

a∂̂n

2

)(
e−ia∂̂n − e−ia∂̂n −1

−ia∂̂n

)
F(∂̂µ)

(
e−ia∂̂n−1
−ia∂̂n

) ∂̂l ∂̂j ,

F (∂̂µ) =
(

1

ia2∂̂2
n

sin(a∂̂n)(1 − e−ia∂̂n ) − ∂̂k ∂̂k

2i∂̂2
n

tan

(
a∂̂n

2

)
e−ia∂̂n (1 − e−ia∂̂n )

)
.

(84)

The vector field Ăµ is also defined by its transformation behaviour that was derived from
(77). As the derivatives are on the right of Ăµ we make the ansatz Ăν = V̂µ

(
ĕ−1
µν

)
.

This ansatz is inserted into ĂµÂµ = V̂ρ(ĕ
−1)ρµ(ê−1)µνV̂ν . But we know that V̂µV̂µ is an

invariant, therefore we conclude that (ĕ−1)ρµ(ê−1)µν = δρν , which leads to

(ĕ−1)ρµ = êρµ. (85)

The formulae for Ă†
µ and Â†

µ are obtained by conjugation.

There is also a transformation matrix ẽµν from V̂µ to Ãν (respectively ˜̆Aν = Ã†
ν) :

Ãµ = ẽµνV̂ν, Ã†
µ = V̂ν ẽµν, (86)

which is

ẽnn = 1, ẽnj = −iaD̂j

iaD̂n +
√

1 − a2D̂µD̂µ

1 − a2D̂kD̂k

ẽln = iaD̂l, ẽlj = δlj

√
1 − a2D̂µD̂µ + a2D̂j D̂l

iaD̂n +
√

1 − a2D̂µD̂µ

1 − a2D̂kD̂k

.

(87)

The inverse matrix V̂µ = Ã†
ν (̃e

−1)µν , with ẽνµ(̃e−1)λν = δµλ is

( ẽ−1)nn = 1 +
a2∂̃k ∂̃k√

1 − a2∂̃µ∂̃µ

−ia∂̃n +
√

1 − a2∂̃λ∂̃λ

1 − a2∂̃s ∂̃s

, ( ẽ−1)nj = ia∂̃j√
1 − a2∂̃µ∂̃µ

,

(88)

( ẽ−1)ln = −ia∂̃l√
1 − a2∂̃µ∂̃µ

−ia∂̃n +
√

1 − a2∂̃λ∂̃λ

1 − a2∂̃k ∂̃k

, ( ẽ−1)lj = δlj

1√
1 − a2∂̃µ∂̃µ

.

6. Conclusion

In this work we have shown how to construct algebraic–geometric quantities on a specific
noncommutative space, the κ-deformed space. This method allows us to define algebraic–
geometric quantities via their consistency with the defining relations of the noncommutative
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space, adding a minimal set of additional requirements. For example, we have shown how
to construct differential forms by demanding consistency with the coordinate algebra and a
specific transformation behaviour under SOa(n) rotations.

The method presented here does not require a thorough understanding of deep
mathematical concepts such as Hopf algebras, for treating noncommutative spaces. The
Hopf algebra description of the SOa(n) symmetry, however, can be fully recaptured in this
context.

For more general noncommutative spaces than the κ-deformed space, our approach might
not automatically lead to well-founded results. However, since this method has shown so
fruitful here, leading directly to workable definitions of derivatives, differential forms and
vector fields, we suggest that the presented method can be used also to investigate other
noncommutative spaces.
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Lett. B 293 344
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[13] Kosiński P, Lukierski J, Maślanka P and Sitarz A 2003 Generalised κ-deformations and deformed relativistic
scalar fields on noncommutative Minkowski space Preprint hep-th/0307038

[14] Sitarz A 1995 Noncommutative differential calculus on the κ-Minkowski space Phys. Lett. B 349 42 (Preprint
hep-th/9409014)

[15] Nowicki A, Sorace E and Tarlini M 1993 The quantum deformed Dirac equation from the κ-Poincaré algebra
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[17] Kosiński K, Lukierski J and Maślanka P 2000 Local field theory on κ-Minkowski space, �-products and
noncommutative translations Czech. J. Phys. 50 1283 (Preprint hep-th/0009120)

[18] Agostini A, Lizzi F and Zampini A 2002 Generalised Weyl-systems and κ-Minkowski space Mod. Phys. Lett.
A 17 2105 (Preprint hep-th/0209174)

[19] Kathotia V 1998 Kontsevich’s universal formula for deformation quantisation and the Campbell–Baker–
Hausdorff formula I, UC Davis Math. 1998-16 (Preprint math.qa/9811174)


